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Abstract The kinetics of phase transitions in the two dimensional Ising model
under different conditions is studied using the string method. The key idea is to work
in collective variables, consisting of block of spins, which allow for a continuous
approximation of the collective variable state-space. The string method computes the
minimum free energy path (MFEP) in this collective variable space, which is shown to
explain the mechanism of the phase transformation (in particular, an approximation of
its committor function, its free energy and its transition state). In this paper the theo-
retical background of the technique as well as its computational aspects are discussed
in details. The string method is then used to analyze phase transition in the Ising model
with imposed boundary conditions and in a periodic system under an external field
of increasing magnitude. In each case, the mechanism of the phase transformation is
elucidated.
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1 Introduction

Nucleation events are ubiquitous in the kinetics of phase transitions and they are
typically difficult to observe in computations. The reason is that these nucleation
events are rare reactive events during which the system must find its way out of the
metastable phase it is currently in, and towards the new more stable phase it reaches
after transition. This involves going trough a dynamical bottleneck of energetic or
entropic origin and, as a result, rare events are usually beyond reach of standard
numerical simulations using molecular dynamics or even Monte Carlo methods. In
addition, the mechanism of these rare events can be quite complicated, so much so
that it would be difficult to analyze from actual reactive trajectories by which the event
occurs even if these trajectories were available (typically, they are not).

A typical example of nucleation event during phase transition is the creation of a
nucleus of critical size out of which the crystal phase can grow during a liquid-to-solid
phase transition [1,2]. The size and shape of this nucleus are typically hard to describe
because the critical nucleus may be much bigger than the individual molecules in the
system and its properties depend only very indirectly on the potential energy between
the molecules (i.e. they involve collective effects in which entropy may matter a lot).
Similar difficulties arise in the Ising model in two-dimension which will be the focus
of the present study. While this system is clearly a much idealized cartoon of an actual
molecular system, it too exhibits the kinetics of a phase transition involving the creation
of a nucleus which is much bigger in size than the lattice size of the system and whose
shape involves a nontrivial interplay between entropic and energetic effects.

When attempting to describe the kinetics of a phase transition either in the Ising
model or in more realistic systems, one typically faces a dilemma. On the one hand,
one would like to introduce a suitable coarsened description of the system which would
remove the irrelevant small-scales details of the transition and focus on its more robust
large-scale characteristics. On the other hand if one coarsens the system too much,
one typically oversimplifies things so much that the answer becomes unreliable. For
instance, methods based on analyzing the free energy landscape in a very few collective
variables to describe the nucleation events, like e.g. the radial size of the nucleus or its
volume, typically fail at giving an accurate description of the way this nucleus forms
in the system [3].

In this work, we propose a way to get around these difficulties using the string
method in collective variables [4]. Unlike standard free energy based methods, the
string method allows to use simultaneously a very large number of collective variables
[5], thereby reducing (though not eliminating) the bias introduced by these variables
(more on this below). The string method is a tool to compute the minimum free energy
path (MFEP) in the collective variables which, if these variables are sufficient to
describe the reaction, is also the path of maximum likelihood by which the transition
occurs when observed in the collective variables. Along the MFEP, the state with
maximum free energy is the transition state, i.e. the critical nucleus (or, more precisely,
the ensemble of critical nuclei) from which the system has half-half probability to either
fall back in the metastable phase or proceed towards the more stable phase and achieve
the transition.
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As mentioned above, the string method in collective variables still requires to choose
these variables a priori. In the context of the Ising model, a rather natural choice is
to use the average magnetization in blocks of spins as collective variables. When the
system is big enough, these blocks can be taken quite large and still be numerous in
the system, thereby allowing for a rather local description of the magnetization in the
system which one expects has chances to be accurate enough (this, however, must be
verified a posteriori by checking that the state of maximum free energy along the MFEP
corresponds indeed to the critical nuclei). Using average magnetization in blocks of
spins as collective variables has also another advantage, namely that these variables
permit to approximate the state of the system by a continuous variable in R

MB if MB

is the number of blocks. In contrast, the state-space of the original Ising model is
discrete, and we will see that the discrete-to-continuous approximation results in an
enormous simplification in computational complexity while accurately predicting the
mechanism of the transition.

The remainder of this paper is organized as follows. In Sect. 2 we recall the main
features of the Ising model. We also specify the dynamics of this system, which is
important since, unlike the thermodynamic properties of the system (e.g. the aver-
age magnetization per spin), the mechanism and timing of the phase transition in
the Ising model do depend on the specific dynamics that we use. Section 3 con-
tains the theory behind our approach, and it is divided in several subsections. First,
in Sect. 3.1 we recall the main results of transition path theory (TPT) [6,7] which
gives exact explicit expressions for various quantities characterizing the statistical
properties of the reactive trajectories (i.e. the trajectories by which the transition oc-
curs) in terms of the equilibrium probability distribution of the system (which is
known) and the so-called committor function (which is unknown but solves a varia-
tional problem). In Sect. 3.2 we introduce the collective variables as a way to simplify
this variational problem. We also show that the discrete-to-continuum approxima-
tion offers a connection with the results of Ref. [4]; in particular, it indicates how
to define the MFEP in the Ising model and why this MFEP is relevant, two top-
ics which are discussed in Sect. 3.3. Finally in Sect. 3.4 we recall how the string
method can be used to calculate the MFEP. We then proceed to apply these results
to the Ising model in Sect. 4. There we first validate numerically the discrete-to-
continuum approximation (Sect. 4.1); then we consider a situation with no applied
field in which the mechanism of transition is dictated by the boundary conditions
imposed on the system (Sect. 4.2); and finally we consider situations with periodic
boundary conditions with an applied field of increasing magnitude (Sect. 4.3) and
study the way the mechanism of the transition depends on the field (as we will see
this mechanism also depends on the size of the system, and we study the nontriv-
ial interplay between finite size effects and applied field). This last example brings
out several interesting features of our approach which are discussed in the conclud-
ing Sect. 5. This section also contains several speculations as well as suggestions
for future work, consistent with the present paper being very much in the spirit of
an exploratory paper in which our answers to the original questions open many new
ones.

123



J Math Chem (2009) 45:188–222 191

2 Model

In this section, we recall the main ingredients of the two-dimensional Ising model
with nearest neighbor interactions. The system consists of Ns spins which can each
take values ±1 and are located at the vertices of a regular square lattice. Thus, the
state-space of the system is S = {−1, 1}Ns , and elements in this space will be denoted
by σ = (σ1, σ2, . . . , σNs ) ∈ S, where σ j = ±1 is the value of the spin at site j . The
Hamiltonian of the system is

H(σ ) = −J
∑

〈i, j〉
σiσ j − h

Ns∑

i=1

σi (1)

where J > 0 is the coupling constant between the spins, h is a uniform external
magnetic field, and 〈i, j〉 indicates that the sum runs only over spin pairs which are
nearest neighbors.

2.1 Equilibrium properties

The equilibrium probability distribution of the system is

µ(σ) = Z−1e−βH(σ ), Z =
∑

σ∈S

e−βH(σ ) (2)

where 1/β is the temperature. It is known that, in dimension two and higher, the Ising
model undergoes a phase transition between a disordered and an ordered phase (see e.g.
[8,9]). When the temperature 1/β is below a critical temperature 1/βc, the distribution
(2) is bimodal and sharply peaked around two metastable states with spontaneous
magnetization per spin m = N−1

s
∑Ns

i=1 σi → ±1 as 1/β→0. In contrast, when
1/β > 1/βc the distribution is mono-modal and broader, and m ≈ 0. For the two-
dimensional Ising model in the absence of a magnetic field (h = 0), 1/βc ≈ 2.269J
and the spontaneous magnetization per spin at 1/β < 1/βc is given by Onsager–Yang
expression [10,11]

m =
(

1 − (sinh(2β J ))−4
)1/8

. (3)

This expression is plotted in Fig. 1 and compared with the results of a Monte Carlo
simulation of a system of Ns = 1002 spins with periodic boundary conditions and
h = 0. How this Monte Carlo simulation was performed is described next.

2.2 Dynamics

Since we are interested in the kinetics of the phase transition in the Ising model,
we need to specify a dynamics. Indeed, while many such dynamics exist which are
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Fig. 1 Spontaneous magnetization per spin as a function of temperature in the two-dimensional Ising
model with nearest neighbor interactions at zero external field. The open circles (only for 1/β < 1/βc)
are calculated using the Onsager–Yang analytical expression in (3) while the full circles are the simulation
results. Note the larger error bars as 1/β → 1/βc , which reflect the fact that the fluctuations in the system
grow as the temperature approaches the critical temperature 1/βc

consistent with the equilibrium distribution (2), the mechanism and timing of the
transition between the metastable states when 1/β < 1/βc depends on the specific
dynamics that we choose. Here we will assume that in any time interval [t, t + dt],
every spin σ j in the system independently attempts to flip with probability dt +o(dt),
and the probability of success of this attempt is given by

c(σ, σ j ) = min
{

e−β(H(σ j )−H(σ )), 1
}

(4)

where H(σ ) is the Hamiltonian defined in (1) and σ j is the state of the system obtained
from σ by flipping spin σ j , i.e.

σ
j

i =
{

σi if i �= j

−σi if i = j
(5)

The factor (4) is the standard Metropolis acceptance/rejection factor and it leads to
a dynamics which can be easily simulated by Monte Carlo. Given that a spin has
attempted (successfully or not) to flip at time tn , the next flipping attempt occurs at
time tn + τ where τ is a random variable distributed exponentially according to

prob(τ ≤ t) = 1 − exp(−Nst). (6)

This attempt involves a spin σ j chosen at random in the system and succeeds with
probability (4). The cycle then repeats itself.

The dynamics specified above is that of a continuous-time Markov chain with (2)
as unique equilibrium distribution and which satisfies detailed balance
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µ(σ)c(σ, σ j ) = µ(σ j )c(σ j , σ ). (7)

This condition is equivalent to the time-reversibility of the Markov chain.

3 Theoretical and computational aspects

In this section, we collect all the theoretical and computational results that we will
then use in Sect. 4 to study specific examples of phase transformations in the Ising
model. Since this section is quite long and rather technical, it is useful to give the main
upshots upfront. In essence, we show how to define the MFEP in the context of the Ising
model, that is, a continuous curve in the space of some appropriate collective variables
which allows to understand the mechanism of the phase transformation (specifically:
to determine the committor function for this transformation as well as its free energy
and its rate). We also show how to identify the MFEP in practice using the string
method.

3.1 Transition path theory for Markov jump processes

We are primarily interested in understanding the mechanism of the transitions which
occur when 1/β < 1/βc between the metastable states with magnetization ±m. One
way to formalize this question is via transition path theory (TPT) developed in [12]
(see also [6,7]) for stochastic differential equations, and generalized in [13] to the case
of continuous-time Markov processes on a discrete state-space. The main results of
TPT in the context of the Ising model are summarized next.

The metastable sets which exist when 1/β < 1/βc, can be characterized e.g. as the
two sets A ⊂ S and B ⊂ S such that

A =
⎧
⎨

⎩σ : 1

Ns

Ns∑

j=1

σ j < −m + δ

⎫
⎬

⎭ B =
⎧
⎨

⎩σ : 1

Ns

Ns∑

j=1

σ j > m − δ

⎫
⎬

⎭ (8)

where δ > 0 is a small parameter. Thus A and B are two sets containing spin configu-
rations close to the one where the spontaneous magnetization is −m or m respectively.
When 1/β < 1/βc and Ns is large, one expects that the system will revisit many times
either A or B before making a transition between A and B. Eventually, however, such
a transition will occur and one is interested in characterizing how and when. More
precisely, given an infinitely long dynamical trajectory of the system, we can prune
out of this trajectory all the pieces during which a transition does occur, i.e. all the
pieces during which the system is out of A and B and is such that it came from A
last and will go to B next (or came from B last and will go to A next: the dynamics
being time reversible because of (7), either pieces of the trajectory are statistically
equivalent after time reversal). We call these pieces “reactive trajectories,” and we are
interested in understanding their statistical properties. The key result of TPT is that
these statistical properties can all be expressed in terms of the equilibrium probability
distribution (2) and the so-called committor function q(σ ) defined such that
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q(σ ) =
(

probability that the system initiated in state σ

will reach B rather than A next

)
. (9)

In particular, the probability µR(σ ) to observe a reactive trajectory at state σ is simply

µR(σ ) = µ(σ)q(σ )(1 − q(σ )) (10)

expressing the fact that, using the Markov property, µR(σ ) is the probability to observe
any trajectory (reactive or not) at state σ (which is µ(σ)) times the probability that it is
reactive (i.e that it will go to B next and came from A last which, by time reversibility,
is q(σ )(1 − q(σ ))). Thus, the probability to observe a reactive trajectory is

Z R =
∑

σ∈S

µR(σ ) < 1; (11)

TPT also gives the following expressions for the probability current of reactive trajec-
tories flowing from state σ to state σ j [13]

f (σ, σ j ) =
{

µ(σ)c(σ, σ j )
(
q(σ j ) − q(σ )

)
if q(σ j ) > q(σ )

0 otherwise
(12)

and for the mean frequency of appearance of reactive trajectories (i.e. the rate of the
transition)

kR = 1

2

Ns∑

j=1

∑

σ∈S

µ(σ)c(σ, σ j )
(

q(σ j ) − q(σ )
)2

(13)

where c(σ, σ j ) is the transition matrix defined in (4). For the derivation of (12) and
(13), we refer the reader to [13].

To make these results complete, it remains to specify an equation for the committor
function q(σ ). This equation is [13]

⎧
⎪⎨

⎪⎩

(Lq)(σ ) = 0 if σ �∈ A ∪ B

q(σ ) = 0 if σ ∈ A

q(σ ) = 1 if σ ∈ B,

(14)

where L is the so-called infinitesimal generator of the Markov chain (also known as
the transition rate matrix), here given by

(Lq)(σ ) =
Ns∑

j=1

c(σ, σ j )(q(σ j ) − q(σ )). (15)

For future use, note that (14) admits a variational formulation. Indeed, it can be checked
by a direct calculation using the detailed balance condition (7) (see the end of this
section) that (14) is the Euler Lagrange equation satisfied by the minimizer of
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I (q) = 1

2

Ns∑

j=1

∑

σ∈S

µ(σ)c(σ, σ j )
(

q(σ j ) − q(σ )
)2

(16)

where the minimization is sought over all q(σ ) which are 0 if σ ∈ A and 1 if σ ∈ B.
Summarizing, the mechanism and the rate of the dynamical transition in the Ising

model can be quantified by (10), (11), (12) and (13). These expressions, however,
require one to calculate the committor function q(σ ) via solution of (15) which,
when Ns is large, is very challenging because of the enormous size of the state space
S = {−1, 1}Ns . The main objective of this paper is to design an approximate way to
solve (14) and obtain an estimate for q(σ ) which can then be used in (10), (11), (12)
and (13).
Derivation of (15). (16) can be written as

I (q) = 1

2

∑

σ ′,σ ′′∈S
|σ ′−σ ′′|=2

µ(σ ′)c(σ ′, σ ′′)
(
q(σ ′′) − q(σ ′)

)2
. (17)

Taking the derivative of (17) with respect to q(σ ) we obtain:

δ I (q)

δq(σ )
=

∑

σ ′,σ ′′∈S
|σ ′−σ ′′|=2

µ(σ ′)c(σ ′, σ ′′)(q(σ ′′) − q(σ ′))(δσ ′′=σ − δσ ′=σ )

=
∑

σ ′∈S|σ ′−σ |=2

µ(σ ′)c(σ ′, σ )(q(σ ) − q(σ ′))

−
∑

σ ′′∈S|σ−σ ′′|=2

µ(σ)c(σ, σ ′′)(q(σ ′′) − q(σ )). (18)

In the first term we can use detailed balance to replace µ(σ ′)c(σ ′, σ ) by µ(σ)c(σ, σ ′)
and in the second term we can relabel σ ′′ into σ ′ to arrive at

δ I (q)

δq(σ )
= −2µ(σ)

∑

σ ′∈S|σ−σ ′|=2

c(σ, σ ′)(q(σ ′) − q(σ ))

= −2µ(σ)

Ns∑

j=1

c(σ, σ j )(q(σ j ) − q(σ )). (19)

Equating to 0 the right hand side of this equation and dividing by −2µ(σ) gives (14).
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3.2 Collective variables and continuous approximation of the committor function

To simplify the problem, we shall suppose that we can introduce a set of collective
variables, defined on S, which are appropriate to describe the mechanism of the reac-
tion in that they are sufficient to parametrize q(σ ). This assumption will be verified
a posteriori.

These collective variables are constructed in the following manner (see Fig. 2). The
system is divided into MB non-overlapping blocks B1, . . . , BMB , of equal size, and
containing each N B

s spins such that MB = Ns/N B
s . The collective variables are then

defined as the local magnetization in each block, i.e.

θα(σ ) = 1

N B
s

∑

j∈Jα

σ j (20)

where Jα denotes the set of indexes j such that σ j ∈ Bα if j ∈ Jα . One key approx-
imation that we shall make is that the committor function q(σ ) can be parametrized
approximately by the collective variables θ(σ ) = (θ1(σ ), . . . , θMB (σ )), i.e. there
exists a function Q(z) of z = (z1, . . . , zMB ) such that

q(σ ) ≈ Q(θ(σ )). (21)

Inserting this ansatz in (16) leads to a new variational problem in which the following
objective function must be minimized:

Î (Q) = 1

2

MB∑

α=1

∑

j∈Jα

∑

σ∈S

µ(σ)c(σ, σ j )(Q(θ(σ j )) − Q(θ(σ ))2 (22)

Fig. 2 Schematic representation of how the collective variables are constructed. A system of Ns = 12×12
spins (left figure), represented by white (σ=1) and black (σ=−1) circles, is divided into MB = 9 non-
overlapping blocks, each containing N B

s = 16 spins, and whose boundaries are shown by the dashed
lines. The collective variables θα(σ ) are defined via (20) as the average value of the spins (i.e. the local
magnetization) in each block Bα (α = 1, . . . , MB ). The figure on the right gives a pictorial representation
of the values of collective variables for the spin configuration of the left figure. These values are represented
using a grey-scale color coding (white=+1, black=−1)
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where, for future use, we have split the sum over all the spins indexes j into a double
sum over the blocks and over the spins in each block. Equation (22) must be minimized
over all Q(z) subject to Q(z) = 0 if z ∈ a and Q(z) = 1 if z ∈ b, where a and b
are the projections of the sets A and B in the space of the collective variables. The
new variational problem is simpler than the original one, but still too complicated to
be tackled directly.

To proceed further, we shall make another key approximation, namely that Q(z) can
be approximated by a function defined on a continuous state-space. The original Q(z),
of course, is defined on a discrete state-space since the collective variables θα(σ ) in
(20) can only assume values which are integer multiples of 2/N B

s between −1 and +1.
However, when N B

s is large, these variables represent a fine partition of the interval
[−1, 1], a property that we shall use next.

First let us rewrite (22) as

Î (Q) = 1

2
C−1

∫

RMB

⎛

⎝
MB∑

α=1

∑

j∈Jα

∑

σ∈S

µ(σ)c(σ, σ j )e−β
λ
2 |θ(σ )−z|2

(Q(θ(σ j ))

−Q(θ(σ ))2

⎞

⎠ dz (23)

where |θ(σ )−z|2 = ∑MB
α=1(θα(σ )−zα)2, λ > 0 is a parameter whose role is explained

below, and

C =
∫

RMB
e−β

λ
2 |θ(σ )−z|2 dz =

(
2π

βλ

)MB/2

. (24)

(23) is still strictly equivalent to (22), but we now make two approximations. To
introduce the first, note that the summation in (23) only involves configurations which
differ by only one spin. This implies that θα(σ j ) and θα(σ ) differs by at most 2/N B

s
since θα(σ j ) = θα(σ ) ± 2/N B

s and θβ(σ j ) = θβ(σ ) for all β �= α when spin σ j by
which σ j and σ differ belongs to block Bα . Assuming that Q(z) is relatively smooth on
the scale 	zα = 2/N B

s , we will approximate the finite difference Q(θ(σ j ))−Q(θ(σ ))

by a derivative, i.e.

Q(θ(σ j )) − Q(θ(σ )) ≈ ± 2

N B
s

∂ Q̄(θ(σ ))

∂zα

. (25)

where Q̄(z) is understood as the smooth interpolation on z ∈ R
MB of the discrete

Q(θ(σ )) (i.e. Q̄ : R
MB → [0, 1] is smooth and such that Q̄(θ(σ )) = Q(θ(σ )) for all

possible values of θ(σ ): see Fig. 3 for a schematic illustration).
In (25), ∂ Q̄/∂zα is still evaluated at θ(σ ). The second approximation is to assume

that ∂ Q̄/∂zα is approximately constant in the ball of radius (λβ)−1/2 around θ(σ ) on

123



198 J Math Chem (2009) 45:188–222

Q(z)

θ(σ)Q(        )

(βλ)
−1/2

Ns
B

2/

Fig. 3 Q̄(z) is the continuous interpolation of the committor, Q(θ(σ )), defined on the discrete space of
the collective variables

which the function e−β
λ
2 |θ(σ )−z|2 is peaked, i.e.

∂ Q̄(θ(σ ))

∂zα

≈ ∂ Q̄(z)

∂zα

for |z − θ(σ )| � (λβ)−1/2. (26)

If this holds we can approximate Q̄(θ(σ )) by Q̄(z) under the integral in (23) and, after
a little algebra, we are left with the following approximation of Î (Q):

Î (Q) ≈ Ī (Q̄) ≡ 2

(N B
s )2

∫

RMB
e−βFλ(z)

MB∑

α=1

mλ
α(z)

(
∂ Q̄(z)

∂zα

)2

dz. (27)

Here we have introduced the “free energy” Fλ(z) defined as

e−βFλ(z) = C−1
∑

σ∈S

µ(σ)e−β
λ
2 |θ(σ )−z|2 (28)

and the factor mλ
α(z) defined as

mλ
α(z) ≡

〈
∑

j∈Jα

c(σ, σ j )

〉

ρλ,z

(29)
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where 〈·〉ρλ,z denotes the average with respect to the distribution

ρλ,z(σ ) = e
−β

(
H(σ )+ λ

2 |θ(σ )−z|2
)

∑
σ∈S e

−β
(

H(σ )+ λ
2 |θ(σ )−z|2

) . (30)

This is the equilibrium distribution function for the spin system in the extended
Hamiltonian

Hλ,z(σ ) = H(σ ) + λ

2

MB∑

α=1

(θα(σ ) − zα)2 (31)

and, for largeλ, 〈·〉ρλ,z approximates the equilibrium expectation conditional at θ(σ )=z.
Note also that the free energy Fλ(z) is normalized in the sense that

∫

RMB
e−βFλ(z) = 1. (32)

The objective function Ī (Q̄) in (27) is one of our main results since the analysis of
the variational problem associated with this function will turn out to be much simpler
than that of the original (16) or the reduced (22). Before explaining why this is the
case, however, it is worth discussing in more details the validity of the approximations
that led us to (27). As explained before, the ultimate check will consist in verifying
that the minimizer of (27) is indeed a good approximation of the original committor
function in the sense that (21) holds. But we can already state two necessary conditions
for this to be the case. The first is that the resulting Q̄(z) should be mostly independent
of the artificial parameter λ introduced in (23), at least in a certain range of values
for λ. This, in turn, will require that the free energy Fλ(z) and the factor mλ

α(z) in (27)
be also mostly independent of λ at least in some band of values of λ. This assumption
will be verified later in Sect. 4.1. Here we simply note that this assumption is not
unreasonable when N B

s is large because in this case it is possible to satisfy

2/N B
s < (βλ)−1/2. (33)

This inequality guarantees that Fλ(z) and mλ
α(z) are smooth functions of z because the

factor e−β
λ
2 |θ(σ )−z|2 in (28) and (29) smears out the features related to the discreteness

of the collective variables (in contrast, as λ → ∞, Fλ(z) and mλ
α(z) become zero

except on the points in [−1, 1] where zα is a multiple of 2/N B
s since these are the only

admissible values for θα(σ )).
The second necessary condition is that the function Q̄(z) minimizing (27) should

be smooth enough in order that (25) and (26) be valid. This requires that the next order
terms in the expansion that led to (25) and (26) be negligible which, accounting for
the inequality (33), reduces to the requirement that (see Fig. 3)
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supz∈RMB ||∇z∇z Q̄||
supz∈RMB |∇z Q̄| � (βλ)−1/2 (34)

where ||∇z∇z Q̄|| denotes the norm of the Hessian tensor obtained by taking second
derivatives of Q̄ with respect to z, and |∇z Q̄| is the norm of the gradient of Q̄ with
respect to z. This condition can be checked a posteriori.

Finally, we note that the continuous approximation above is consistent with attempts
to approximate the dynamics of the Ising model by a partial differential equation in
the limit when Ns → ∞ and N B

s → ∞ with N B
s /Ns → 0. The existence of such

limit can be rigorously proven in an Ising model with long range interaction, but it is
left open for nearest neighbor interactions (see e.g. [14] and references therein).

3.3 Transition path of maximum likelihood

Let us now explain why the minimization of Ī (Q̄) in (27) is simpler than that of (22).
In essence, this is because we can bypass this minimization altogether by observing
the following. The Euler–Lagrange equation associated with the minimization of (27)
is

⎧
⎪⎪⎨

⎪⎪⎩

0 =
MB∑

α=1

∂

∂zα

(
e−βFλ(z)mλ

α(z)
∂ Q̄

∂zα

)
,

Q̄|z∈a = 0, Q̄|z∈b = 1.

(35)

This equation is the backward Kolmogorov equation for the committor function asso-
ciated with the stochastic differential equation (e.g. [4])

żα(τ ) = −mλ
α(z(τ ))

∂ Fλ(z(τ ))

∂zα

+ β−1 ∂mλ
α(z(τ ))

∂zα

+
√

2β−1mλ
α(z(τ )) ηα(τ ), (36)

where ηα(τ) is a white-noise satisfying 〈ηα(τ)ηβ(τ ′)〉 = δαβδ(τ − τ ′). To avoid
confusion, we stress that the time τ in (36) is artificial and that we do not claim that
the dynamics of the θα(σ ) in the original Ising model can be approximated by the
solution of (36). Simply, we observe that the reactive trajectories in (36) have some of
the same statistical properties as those of the original Ising model and, in particular,
they share the same committor function (this, of course, assumes that the collective
variables θα(σ ) are good collective variables and that (21) holds).

Why is this observation useful? It is useful because we know a lot about the mech-
anism of the reaction in the system governed by (36) (and thereby about the solution
of (35)), at least when the temperature 1/β (i.e. the thermal energy) is much smaller
than the free energy barriers between the metastable sets a and b. When this is the
case, indeed, the theory of large deviations [15] (see also [4,16]) tells us that, with
probability close to 1, the reactive trajectories follow the minimum free energy path
(MFEP) between a and b, i.e. the curve, connecting the minimizer of Fλ(z) in a to the
one in b, which is such that it is always parallel to the vector field with components
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mλ
α(z)∂ Fλ(z)/∂zα . (More precisely, the theory tells us that the flux carried by the

probability current of the reactive trajectories is concentrated in a small tube around
the MFEP). If we parametrize the MFEP by z(s) with s ∈ [0, 1] and |z′(s)| = cst (this
corresponds to parametrizing the MFEP by normalized arc-length), z(s) then satisfies

0 = mλ
α(z(s))

∂ Fλ(z(s))

∂zα

−|z′(s)|−2z′
α(s)

MB∑

β=1

z′
β(s)mλ

β(z(s))
∂ Fλ(z(s))

∂zβ

, α = 1, . . . , MB (37)

where z′(s) = (dz1(s)/ds, . . . , dzMB (s)/ds) is the string tangent at s.
In Sect. 3.4 we explain how to identify the MFEP solution of (37) via the string

method. Before doing so, however, it is useful to give an expression for the committor
function in terms of the MFEP. As explained in Ref. [4], locally around the MFEP,
the committor function Q̄(z) solution of (35) takes constant value in the hyperplanes
P(s) whose normal n̂(s) is parallel to the gradient of the free energy, i.e. n̂(s) =
∇z Fλ(z(s))/|∇z Fλ(z(s))|. In addition, the committor function along the MFEP is
given by [4]

Q̄(z(s)) =
∫ s

0 R(s′)/W (s′)ds′
∫ 1

0 R(s′)/W (s′)ds′ . (38)

Here

R(s) = |z′(s)|
|mλ(z(s))n̂(s)| (39)

and

W (s) =
∫

P(s)
e−βFλ(z)dσ(z) ≈ G(s)e−βFλ(z(s)) (40)

where dσ(z) is the surface element in the hyperplane P(s), and to obtain the last
approximation in (40), we have used the fact that e−βFλ(z)is strongly peaked at z(s)
in P(s), so that the integral can be evaluated by Laplace method. G(s) is a prefactor
term that accounts for the curvature of Fλ(z) in P(s) around z(s). In this paper, we
will neglect entropic effects associated with G(s) and assume that G(s) ≈ cst . Using
(40) in (38) we then have

Q̄(z(s)) =
∫ s

0 R(s′)eβFλ(z(s′))ds′
∫ 1

0 R(s′)eβFλ(z(s′))ds′ . (41)

We will verify a posteriori that the assumptions that led to (41) (in particular G(s) ≈
cst) are valid by checking how good an approximation Q̄(z(s)) is of the committor
function along the MFEP. Note that, if the free energy barrier along z(s) is much higher
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than 1/β, the function Q̄(z(s)) will vary sharply [4] from 0 to 1 at the point z along
the MFEP where Fλ(z(s)) reaches its maximum, i.e. Fλ(z) = maxs∈[0,1] Fλ(z(s)).
This point will then identify the transition state for the phase transformation.

3.4 String method

Let us denote by g(z) the vector with components gα(z) = −mλ
α(z)∂ Fλ(z)/∂zα . The

basic idea of the string method is to identify the MFEP by evolving a curve using g(z)
as velocity for this curve while controlling its parametrization. In practice, this is done
by starting from an initial guess for the string, z(s, 0), discretizing it into P +1 images
z p
α(0) = zα(p/P, 0), p = 0, . . . , P , and, for k = 0, 1, 2, . . ., updating these images

as follows (for details, see e.g. [17]):

1. Evolve each image z p(k	t) using the forward Euler scheme, i.e. compute

z p,
α = z p

α(k	t) + gα(z p(k	t))	t (42)

where 	t is the updating time-step.
2. Get a new set of images z p((k +1)	t), p = 0, . . . , P by interpolating a piecewise

linear curve across the points z p,, p = 0, . . . , P and redistributing these points
evenly along this curve (this enforces the discrete equivalent of parametrizing the
curve by normalized arc-length).

3. Go to 1. unless some convergence criterion on z p((k + 1)	t) is satisfied.

The updating step in (42) requires one to know gα(z) = −mλ
α(z)∂ Fλ(z)/∂zα . How to

compute this term is explained next.

3.4.1 Calculation of the mean force and mλ(z)

From (29), the factor mλ
α(z) is a conditional average on the distribution (30). It is easy

to show that the mean force ∂ Fλ(z)/∂zα is also one such conditional average:

∂ Fλ(z)

∂zα

= λ〈zα − θα(σ )〉ρλ,z . (43)

To compute these averages we use the Monte Carlo procedure described in Sect. 2.2
with H(σ ) replaced by the extended Hamiltonian Hλ,z(σ ) defined in Eq. (31).
Explicitly, for each image independently, we compute

∂ Fλ(z p(k	t))

∂zα

≈ 1

Nk

Nk∑

n=1

λ
(
z p
α(k	t)) − θα(σ (n))

)
. (44)

Here Nk is the number of Monte Carlo steps performed at iteration k, with each step
corresponding to an attempt to flip a randomly chosen spin, and σ(n) is the spin state
at step n. Similarly, the factor mλ(z) can be calculated using the estimator
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mλ
α(z p(k	t)) ≈ 1

Nk

Nk∑

n=1

Aα(n), (45)

where we have introduced

Aα(n) =
∑

j∈Jα

c(σ (n), σ j (n)) (46)

(with σ j defined in (5)).
In practice the computation of the averages (44) and (45) is done in the following

manner. At each iteration, we keep z(k	t) fixed, and evaluate (44) and (45) by an
average of length Nk = N0(1+2ν	t)k with ν > 0. The reason why we progressively
increase the length of the average is to guarantee that the string actually converges. If
Nk was kept fixed, the string would keep oscillating due to statistical fluctuations in
the estimator of g(z). In contrast, by increasing the length of the averaging window as
we do, the error on the estimators of the mean force and mλ decreases as N−1/2

0 (1 +
2ν	t)−k/2, which for k = �t/	t� is approximately N−1/2

0 e−νt . Ideally, the constant
ν should thus be chosen such that it matches the convergence rate of the exact iteration
scheme, i.e. the one in which we would use the exact g(z) rather than its approximation
tainted by statistical error. If we take ν smaller than this convergence rate, the overall
convergence will be limited by ν itself; if we take ν bigger than this convergence rate,
then we waste computation time evaluating the averages too precisely at every step.
In practice, ν was adjusted by trial and error in the results presented below.

Finally, we note that, from a computational point of view, the string method is rather
easy to parallelize, since the evolution step (including the calculation of (44) and (45))
in (42) is carried out independently for each image, and only the reparametrization
step requires information from all the images on the string.

3.4.2 Calculation of the free energy profile along the MFEP

Once the string has converged to the MFEP, the free energy along the MFEP can be
calculated from the mean force using thermodynamic integration:

Fλ(z(s)) − Fλ(z(0)) =
∫ s

0

MB∑

α=1

z′
α(s′)∂ Fλ(z(s′))

∂zα

ds′. (47)

It is convenient to transform this expression into a new one more suitable for the
computation because it only requires one to know the orientation of z′(s) with respect
to g(s) and not its precise value (and hence it is less sensitive to small errors in the
numerical approximation of z′(s)). To get this new expression, note that, along the
MFEP, z′(s) is parallel or antiparallel to g(z(s)), i.e.

z′
α(s) = r(s)gα(z(s))

|z′(s)|
|g(z(s))| (48)
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where r(s) = +1 if
∑MB

α=1 gα(z(s))z′
α(s) ≤ 0 and r(s) = −1 otherwise. Inserting

(48) in (47) yields

Fλ(z(s)) − Fλ(z(0)) =
∫ s

0

r(s′)
|g(z(s′))|

MB∑

α=1

gα(z(s′))∂ Fλ(z(s′))
∂zα

|z′(s′)|ds′. (49)

This formula can be discretized by trapezoidal rule

Fλ(z
p) − Fλ(z

0) = 1

2

p∑

p′=1

(T p′ + T p′−1)|z p′ − z p′−1| (50)

where

T p = r(p/P)

|g(z p)|
MB∑

α=1

gα(z p)
∂ Fλ(z p)

∂zα

(51)

and r(p/P) = −sign
(∑MB

α=1 gα(z p)(z p+1 − z p−1)
)

. Once the values Fλ(z p) ≡
Fλ(z(p/P)) for p = 0, . . . , P have been obtained via (50), we compute Fλ(z(s))
on a finer grid in s ∈ [0, 1] using cubic spline interpolation. This interpolation step
turns out be useful because the free energy in the examples treated in Sect. 4 spans a
rather large range of values and can vary significantly between the original points z p.
Interpolation between these points allows us to capture these variations at least to some
degree of accuracy.

3.4.3 Calculation of the committor function along the MFEP

The values of the committor function along the MFEP, Q̄(z(s)), can be calculated by
discretizing (41) and using the interpolated Fλ(z(s)) computed in Sect. 3.4.2.

4 Results

In this section, we present the results of the string method applied to the study of the
mechanism of the dynamics of phase transitions in the two-dimensional ferromagnetic
Ising model consisting of a square lattice of Ns = 1002 spins subject to different
boundary conditions (Sects. 4.2 and 4.3). To begin, however, we test the continuous
approximation made in Sect. 3.2 and determine the value(s) of λ required for this
approximation to be valid.

4.1 Validation of the continuous approximation

In this section we check that, given the size of the block that we use to define the col-
lective variables, there is indeed a range of values of the parameter λ such that the free
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energy Fλ(z) defined in (28) is roughly independent of λ. Recall that λ is the parameter

that we use to smear things on the scale (βλ)−1/2 using the factor e−β λ
2 |z−θ(σ )|2 . If

λ is too small, we expect that the smearing will be too aggressive, i.e. we will loose
important features of the transition mechanism we wish to describe. But if λ is too big
and the inequality (33) is not satisfied, the smearing will be ineffective and Fλ(z) will
not be the smooth function required in order that the continuous approximation made
in Sect. 3 be valid.

The test we use is the following. We consider a system of spins of size Ns = 1002

with periodic boundary conditions, in which the collective variables are defined using
blocks of size N B

s = 100, so that there are MB = Ns/N B
s = 100 collective variables.

We also set the temperature at 1/β = 0.8/βc, i.e. below the transition temperature, and
h = 0. (Ns , N B

s , and 1/β are the same as what we will use in Sects. 4.2 and 4.3.) We
then construct the following path in the space of the collective variables: zα(s) = s for
α = 1, . . . , MB , where s ∈ [0, 1]. Note that this is not the MFEP, just an arbitrary path.
To take into account admissible and not-admissible values for θ(σ ), we discretize this
path into P = 2N B

s points. At each point, we perform a Monte-Carlo run of 108 steps
during which we calculate the estimator of ∇z Fλ(z) according to (44) using different
values of λ. We then compute the free energy as function of s by thermodynamic
integration of ∇z Fλ(z(s)) along the path. This gives F̃λ(s) ≡ Fλ(z(s)), which we
normalize so that

∫ 1

0
e−β F̃λ(s)ds = 1. (52)

The function F̃λ(s) is shown in Fig. 4 for different values of λ. As it can be seen from
this figure, there is range of values of λ around λ = (N B

s )2/(4β)= 4,500, roughly
4,000 ≤ λ ≤ 18,000, for which F̃λ(s) is approximately independent of λ. In contrast,
for λ < 4,000 and λ >18,000, F̃λ(s) varies with λ. In particular, when λ >18,000,
the discreteness of the collective variables starts to emerge. This is reflected by F̃λ(s)
displaying an oscillatory behavior, with local minima at the admissible points along
the path, i.e. at zα = n(2/N B

s ) with n ∈ Z, and local maxima at the values of zα that
are not admissible for θα(σ ). The period of these oscillations in s is 2/N B

s and their
amplitude increases with increasing λ.

These results suggest that we should choose a value of λ in the range 4,000 ≤ λ

≤ 18,000. However, since the variance of the estimator of the mean force (44) increases
as λ [4], it is convenient to take λ not too big in this range. For the simulations presented
in Sects. 4.2 and 4.3 we used λ = (N B

s )2/4β = 4,500.

4.2 Application I: Fixed boundary conditions

In our first application, we consider a two-dimensional system of Ns = 1002 spins
at 1/β = 0.8/βc, with no applied field (h = 0) and with fixed boundary conditions
constructed in the following manner. Four additional layers of fixed spins are added
around the system, where all spins in the upper and lower boundary layers are kept
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Fig. 4 The function F̃λ(s) as a function of s for various values of λ (top figure). The bottom figures show
details of F̃λ(s) near s = 0 (left) and s = 1 (right). The values of λ go from 1,000 to 15,000 in steps of
1,000 and then from 20,000 to 50,000 in steps of 10,000, with curves at lower λ laying below the curves at
higher λ. The dashed line is for the value λ = (N B

s )2/(4β) = 4,500. These results confirm the existence
of a range of values for λ, roughly 4,000≤ λ ≤18,000, for which F̃λ(s) is approximately independent of λ

fixed at the value σ = −1 and all spins in the left and right boundary layers at the
value σ = +1, as illustrated in Fig. 5.

These fixed spins act as a local field on the system, in the sense that they contribute
to the Hamiltonian in (1), but are kept fixed during the dynamics.

In this set-up, there are two equivalent (by symmetry) metastable states in the
system (see Fig. 6) [18], one with positive magnetization close to +1 except for a thin
layer near the upper and lower edges of the system (state A) and one with negative
magnetization close to −1 except for a thin layer near the right and left edges of the
system (state B). We are interested in studying the transition mechanism between
these two metastable states.

4.2.1 String method set-up

To use the string method, we introduce MB = 100 collective variables, each defined as
in (20) with N B

s = 100. As initial string we take a linear interpolation between the state
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Fig. 5 Schematic representation
of the fixed boundary conditions
described in the text. Only the
spins represented by circles
(black: −1, white +1) are
evolved according to the
Metropolis dynamics, while the
spins represented as squares are
kept fixed at the value −1 (black
squares) and +1 (white squares),
and act as a local field on the
neighboring spins. Note that it is
not necessary to place spins at
the four outer corners of the
system since each spin interacts
only with the four nearest
neighboring spins

Fig. 6 (a) MFEP in the collective variables space for the Ising model with fixed boundary conditions. The
MFEP goes from top left to bottom right, and is represented using 28 images. A grey-scale color coding
is used, with white: +1 and black: −1. (b) Instantaneous spin configurations along the MFEP (white dots
represent σ = 1 and black dots σ = −1). (c) Values of mλ(z) along the MFEP, color coded with black for
the lowest values (≈ 3) and white for the highest values (≈ 16)

with zα = 1, and the state with zα = −1, α = 1, . . . , MB , which we discretize into
P + 1 = 28 images. The string is then evolved according to the procedure described
in Sect. 3.4 with 	t = 10−4 in (42). To calculate the estimators of the mean force and
mλ(z) we used ν = 1.15 and N0 = 107. The initial string converged to the MFEP in
about 8,000 iterations, and 2,000 more iterations were used to refine the MFEP.
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4.2.2 Minimum free energy path

The MFEP in the space of the collective variables identified by the string method is
shown in Fig. 6a, where the images along the path go from top left to bottom rigth.
Figure 6b shows snapshots of corresponding instantaneous configurations of the spins,
while the values of mλ(z) along the MFEP are represented in Fig. 6c. Note that mλ(z)
is small (darker color) in the bulk and larger (lighter color) at the interfaces between
blocks with opposite magnetization, so that it may be regarded as an interface tracker.
Starting from the configuration with most spins up (p = 0), two clusters of spins
down start to grow symmetrically from the boundaries fixed at the value −1. The
clusters keep growing in size, until they merge at the center of the lattice, and form
an X-shaped configuration (p = 14). At this point, the cluster of spins down starts to
grow sidewise, towards the boundary layers with positive valued spins.

Although the system configurations in some of the points along the MFEP are not
perfectly symmetric (see, e.g., p = 21 and 25), the MFEP is very reasonable and
shows a symmetric transition pathway, as expected. The symmetry is two-fold: each
configuration along the path is left-right and up-down symmetric due to the symmetric
boundary conditions, and the path itself is symmetric by reversal of its direction and
inversion of the sign of all the spins since the two end-points of the string have the
same (free) energy, and are exactly equivalent by spin inversion.

Note finally that this transition pathway is strikingly similar to the one found in
[16] in the context of Allen–Cahn equation (i.e. a partial differential equation which
can be thought of as a mean field model for the Ising model).

4.2.3 Free Energy and committor test

The free energy profile along the MFEP, Fλ(z(s)), calculated using the procedure
described in Sect. 3.4.2, is plotted in Fig. 7 (left). The free energy profile is approx-
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Fig. 7 Free energy profile and committor values along the MFEP for the spin system with fixed boundary
conditions. The free energy (left figure) was calculated with (50) using the 28 points along the discretized
MFEP (circles), and interpolated by cubic splines (full line). The committor (right figure) calculated using
the cubic spline interpolation of the free energy (full line) agrees remarkably well with the committor values
obtained by direct simulation (triangles)
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imately symmetric, as expected from the symmetry of the MFEP, with two equally
deep minima at the end points, separated by a high barrier located at s = 0.5 (i.e.
between images p = 13 and p = 14—recall that we use cubic spline interpolation to
get Fλ(z(s)) for s ∈ [0, 1] from Fλ(z p) with p = 0, . . . , 27).

In Fig. 7 (right) the committor values along the MFEP calculated using (41) are
compared with the ones obtained by direct simulation, i.e. by creating a set of 500
different initial states of the spin system for every z p along the MFEP (this is done
by Monte Carlo sampling using the extended Hamiltonian Hλ,z p (σ )), launching unre-
strained trajectories from these initial states (i.e. using now the original Hamiltonian
H(σ )), and calculating for every z p the fraction of the 500 trajectories which reach
first state B rather than A. The committor values from direct simulation are in very
good agreement with the curve obtained using the cubic spline interpolation of the
free energy, indicating that the collective variables are appropriate to describe the
transition. Both give a committor value 1

2 at s = 0.5 (i.e. between images p = 13
and p = 14), which is also the point for which the free energy has a maximum,
and which corresponds to an X-shaped configuration of the system (see Fig. 6). This
configuration can therefore be identified as the transition state.

4.3 Application II: Periodic boundary conditions

In the second application we consider a system similar to the one studied in Sect. 4.2
(same number Ns = 1002 of spins at the same 1/β = 0.8/βc), but we change
the boundary conditions to periodic boundary conditions and we turn on an uniform
external field, h ≥ 0. Our aim is to investigate in which way the presence of this external
field changes the transition mechanism. In absence of an external field (h = 0) the two
metastable states A and B have the same equilibrium distribution (2) and are equi-
probable. When a positive uniform magnetic field is applied to the system, h > 0,
the probability of state A decreases, while the one of B increases. There is a limiting
value, function of the temperature, of the external field, above which the transition
from state A to state B is no longer an activated process, i.e. the free energy barrier
disappears. We are interested in what happens for values of h smaller than this critical
value. The results presented in the following are for h = 0.0, 0.005, 0.01, 0.02, 0.03
and 0.04, since we established by Monte Carlo simulations that state A is no longer
metastable around h = 0.05 when 1/β = 0.8/βc.

We apply the string method using the parameter setting described in Sect. 4.2.1.

4.3.1 Minimum free energy path

The results of our MFEPs calculations are shown in Fig. 8. The MFEPs at different
values of h are represented in the space of the spins, with each MFEP going from
top left to bottom right. The MFEPs in the collective variables space (not shown) are
similar to the MFEPs in the space of the spins, only with a coarser resolution.

All the transition pathways involve the formation of a small circular-shaped droplet
of the phase with all spins up into the bulk phase of spins down. This initial droplet
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(a) h=0.0 (b) h=0.005 (c) h=0.01

(d) h=0.02 (e) h=0.03 (f) h=0.04

Fig. 8 MFEPs in the Ising system with periodic boundary conditions at increasing magnitude of the external
magnetic field h. The MFEPs are represented in the space of the spins and each goes from top left to bottom
right. Positive valued spins are represented in white and negative valued ones in black

then grows in a way which depends on the magnitude of the external applied field
[19].

For h ≤ 0.02, the droplet grows mainly horizontally first, until it reaches the left and
right boundaries of the system and reconnects into a stripe-like structure. This stripe-
like structure then grows by motion of its horizontal interfaces up to a point where it
disconnects again into a droplet of spins down which then shrinks and evaporates. This
transition from droplet to stripe is known as the percolative step in the phase transition
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of the two and three dimensional nearest neighbor ferromagnetic Ising models (see
e.g. [20]).

In contrast, for h ≥ 0.03, the initial droplet remains approximately circular as it
grows, until it reaches the left and right, then the upper and lower boundaries of the
system. After the droplet has connected on all sides, the small remaining region of
spins down evaporates.

To understand the difference in the transition mechanism at low and high values of
the external field and to identify the transition state, we analyze the free energy profile
along the MFEP and the committor values.

4.3.2 Free energy profiles, committor values and transition state

The free energy profiles and the committor values along the MFEPs are shown in
Figs. 9 and 10, respectively. The committor values calculated using (41) are compared
with the committor values obtained by direct simulation (triangles), where each point
is a statistics on 500 unrestrained trajectories calculated as described in Sect. 4.2.3. To
determine the “entropic contribution” to the transition pathway (this terminology is
explained below) we have also calculated the committor values using (41) but replacing
the free energy Fλ(z(s)) by the average Hamiltonian

E(z(s)) = 〈H(σ )〉ρλ,z(s) (53)

where 〈·〉ρλ,z denotes conditional expectation with respect to (30), i.e. the approximate
equilibrium expectation at θ(σ ) = z.

At all values of h the free energy along the MFEP displays two local minima
corresponding to the metastable states A (i.e. s = 0, or image p = 0) and B (i.e.
s = 1, or image p = P). At h = 0 the minima of the free energy have the same value,
while as h is increased the free energy of B relative to A decreases, and the free energy
barrier between A and B decreases.

For each value of h the free energy profile between the two minima can be divided
into different regions, identified by a change of slope and indicated by vertical dotted
lines in Fig. 9. For h ≤ 0.02, there are two such changes of slope. Starting from
s = 0 and moving toward s = 1, the first change of slope arises roughly when a
configuration with a droplet (d) reconnects into one with a stripe-like structure going
across the system (s), and the second change of slope arises when this elongated
stripe breaks down into a droplet again. The first change of slope also coincides with
the maximum of the free energy. In contrast, for h ≥ 0.03, there are three changes
of slope. Starting from s = 0 and moving toward s = 1, the first change, which
also coincides with the free energy reaching its maximum, corresponds to no special
change in configuration: it simply arises when the circular droplet reaches a critical
size, which is bigger for h = 0.03 than for h = 0.04. The next two changes of slope
then correspond to a droplet-to-stripe and a stripe-to-droplet transition, as observed
for h ≤ 0.02, with the difference that the free energy does not reach any maximum.

The transition at h = 0 is special since a flat energy profile is observed, roughly,
for s ∈ [0.26, 0.74] (i.e. between images p = 7 and p = 20). This indicates the
presence of a diffusive free energy barrier, which corresponds to configurations where
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Fig. 9 Free energy profile along the MFEP for the system of spins with periodic boundary conditions at
different values of the external magnetic field h. The free energy is calculated using the 28 images along
the MFEP (black dots) and by cubic spline interpolation of these points (full line). The vertical dotted lines
mark the boundaries of the regions where there is a droplet (d) in the system, or a stripe-like structure (s)

the spins separate into parallel stripes of opposite sign, as shown in Fig. 8a. Note that
for this value of the field we symmetrized the free energy profile, since small errors in
the MFEP calculation resulted in an unphysical asymmetry of the free energy profile.
This diffusive region disappears at h > 0.
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Fig. 10 Committor values along the MFEPs for different values of the applied field h. The committor
values are calculated using the cubic spline interpolation of the free energy (solid line), the energy (dashed
line) and by direct simulation (triangles)

For all considered values of h the free energy barrier is high compared to 1/β, hence
the free energy maximum determines the location of the committor value 1

2 along the
MFEP, as can be seen from Fig. 10. Due to the diffusive barrier, when h = 0, we
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could not get a reliable estimate of the committor from direct simulation, since the
trajectories started from the configuration in the middle of the flat barrier take a very
long time to reach either A or B. For h = 0.005 and h = 0.01, the committor values
calculated using the free energy and the ones from direct simulations are in good
agreement. This agreement is not as good for h ≥ 0.02, with h = 0.02 being the worst
case. Note also that the committor values calculated using the average energy (53)
instead of the free energy in (41) also agree reasonably well with those from direct
simulations when h = 0.005, h = 0.01 and h = 0.02 but they do not when h = 0.03
and h = 0.04: these predictions also become markedly worse than the committor
values calculated using the free energy for h = 0.03 and h = 0.04.

To explain these features, we shall make the two following working assumptions,
which are consistent with our results (the first is about the mechanism of the transition,
the second about an artifact in the string method which will be confirmed in Sect. 5
along with a way to correct for it):

1. In an infinite system with h > 0 and 1/β < 1/βc, the transition state is a quasi-
circular critical droplet whose radius decreases when 1/β and/or h increase. Con-
sidering now a system of finite size, this implies that there exist a critical value
of the field which depends on the temperature, say, hc(β), at which the critical
droplet is as large as the system itself. For h > hc(β), the critical droplet is
smaller than the system, and the transition path from the metastable state A to
this critical droplet will essentially be the same as in the infinite system. How-
ever, for h ≤ hc(β), the droplet growing out of state A reconnects before being
able to reach its critical size, and the transition state becomes a stripe-like struc-
ture connected through two sides of the system (see Fig. 11 for an illustration). In
addition, the size and shape of the transition state with stripe-like structure observed
below hc(β) depend less on the temperature than the size of the critical droplet
observed above hc(β).

2. Working with collective variables in the string method amounts to artificially cool-
ing down the system. This means that the string calculation done at temperature
1/β describes in fact what happens at an effective temperature 1/βeff < 1/β.

x

11/ch ( )

β21/hc( )

1/β

h

h

stripe droplet

stripe droplet
x

β

Fig. 11 Illustration of the switch in transition mechanism and the way the critical field at which this switch
occurs depends on the temperature, here with 1/β1 < 1/β2 < 1/βc
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Let us now show that we can put together these two working assumptions to explain
our results. First, our results clearly corroborate the existence of a switch in the transi-
tion mechanism, with the transition state (i.e. the structure with committor 1

2 along the
MFEP) going from a stripe-like structure to critical droplet as h increases. However,
they predict that the mechanism switch occurs at a larger value of the critical field than
it actually does. This is because the string calculation corresponds to what effectively
happens at some 1/βeff < 1/β and the critical field at which the mechanism switch
occurs depends on the temperature with hc(βeff) > hc(β) (see Fig. 11). According
to what is seen in Fig. 10, it seems that hc(β) is somewhere between h = 0.02 and
h = 0.03, whereas hc(βeff) < 0.02: this explains that the most important discrepancy
between the committor predicted by the string method and the actual committor along
the MFEP arises for h = 0.02. Below the mechanism switch, i.e. when h = 0.005
or h = 0.01 are less than both hc(β) and hc(βeff), the committor predicted by the
string method agrees well with the actual committor, consistent with the transition
state stripe-like structure being mostly independent of the temperature (and hence
unaffected whether we work at the physical 1/β or the effective 1/βeff). Above the
mechanism switch, the committor predicted by the string method is slightly off and to
the right of the actual committor, i.e. the critical droplet predicted by the string method
is slightly larger than the actual critical droplet along the MFEP. This is consistent with
the size of the critical droplet depending on the temperature and being smaller at 1/β

than 1/βeff. Note that, when the committor function calculated along the MFEP via the
string method does not agree with the one estimated by direct simulation, the MFEP
itself may be incorrect. In particular, the path in Fig. 8 when h = 0.02 is incorrect
because the string method misses the mechanism switch due to the artificial cooling
effect it introduces (the problem is less dramatic for the paths when h = 0.03 and
h = 0.04 since the cooling effect does not interfere with the finite size of the system
at these field values). The correct path when h = 0.02 is shown in Fig. 14 below and
we explain in Sect. 5 how it can be obtained by compensating for the cooling effect
of the string method.

The committor values predicted using the average energy, E(z(s)) in (53), rather
than the free energy provide an additional confirmation of our working assumptions.
Indeed, using E(z) rather than Fλ(z) amounts to cooling the system even more, and
therefore amplifying the effects described above even further (Fig. 10 suggests that
the effective temperature obtained by working with E(z) is such that the critical field
hc(β) at this temperature is even above h = 0.04).

Finally, it should be stressed that the MFEP is degenerate since the system is
invariant by translation. Our results indicate that this degeneracy is not too important
since it does not seem to affect much the committor function (at least after correcting
for the cooling effect following the procedure discussed in the next section). This
point, however, deserves further investigation.

5 Outlook and discussion

Our results show that the string method is able to compute efficiently and with good
accuracy the MFEP and thereby capture the transition mechanism in the kinetics of
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phase transformations in the Ising model under different conditions. This task would
have been difficult and extremely costly to address by direct simulation, and even by
other existing methods (such as umbrella sampling), due to the large number (= 100)
of collective variables that we use to describe the transition. We have shown that these
collective variables are indeed a good set of variables, not only because the MFEPs
in these variables are very reasonable transition paths, but also (and more decisively)
because they predict the committor function along this MFEP (and the associated
transition state) with reasonable accuracy. These features make the technique attractive
and potentially useful for more interesting and challenging applications than the Ising
model. Nevertheless, we have noticed that, in some special cases, the string method
gives an incorrect transition pathway. As already mentioned in Sect. 4.3 this effect is
due to the fact that, as we discuss next, introducing collective variables amounts to
artificially cool down the system. This also means that, in the string method, the results
can be improved by working with an artificial temperature higher than the physical
one. Let us elaborate on these points.

Let us first establish that using collective variables does indeed artificially cool the
system down. To this end, consider a system of spins with periodic boundary conditions
and h = 0, in which we introduce a constant number, MB = 100, of collective
variables but we change the number of spins Ns , so that the size of the blocks used
to define the collective variables increases with increasing Ns , i.e. N B

s = Ns/100. In
each system, we identify the minimizer of the free energy Fλ(z). This can be done,
for instance, by starting from the initial condition zα(0) = 1, α = 1, . . . , MB and
evolving the collective variables by steepest descent

zα((k + 1)	t) = zα(k	t) − ∂ Fλ(z(k	t))

∂zα

	t (54)

where ∂ Fλ(z(k	t))/∂zα = λ〈zα(k	t) − θα(σ )〉ρλ,z , 	t = 10−4, 1/β = 0.8/βc, and
λ = (N B

s )2/(4β). The fixed point of (54) is a configuration z minimizing the free
energy. The average magnetization per spin, m, conditional on θ(σ ) = z (which we
compute approximately using restraints) is plotted in Fig. 12 as a function of the size
of the blocks, N B

s . Our results show that m is higher than its value in a unrestrained
system at the same temperature (dashed line in the figure), with m approaching the
value of the unrestrained system with increasing size of the blocks. Since there is
a one-to-one correspondence between average magnetization and temperature, this
confirms that the restraint imposed by the collective variables results in an effective
temperature which is lower than the physical temperature 1/β (i.e. the one used in the
Monte Carlo dynamics) of the system.

This cooling effect is also shown in Fig. 13. Here we fix the size of the blocks at
N B

s = 100, and we compare the magnetization per spin as a function of temperature in a
free system and in a system with the restraint on the collective variables. The figure also
indicates which artificial temperature 1/β̄ should be used in the restrained simulations
in order that the effective temperature 1/βeff < 1/β̄ (which we determine via the
average magnetization, m, it induces) be equal to the physical one, 1/βeff = 1/β.

These results suggest that the discrepancies that we observed in Sect. 4.3 between
the actual committor function and the one calculated by the string method can be
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Fig. 12 Average magnetization per spin as a function of the number of spins in the blocks used to define
the collective variables. The dashed line indicates the value of the magnetization in a unrestrained system
at the temperature used in the restrained simulations (1/β = 0.8/βc)
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Fig. 13 Average magnetization per spin as a function of temperature for a free system (solid line) and a
system with the restraint on the collective variables (dashed line). The dotted lines indicate how to determine
the artificial temperature 1/β̄ to use in the restrained simulation in order that the effective temperature
1/βeff < 1/β̄ in this system be equal to the physical temperature, 1/βeff = 1/β

diminished by using the string method at an artificially higher temperature so that
1/βeff = 1/β—from Fig. 13, it turns out that 1/β̄ = 0.87/βc gives 1/βeff = 1/β =
0.8/βc and we checked that this result does not depend much on the applied field.
We applied this technique to revisit the transition pathway at h = 0.02: the new
pathway obtained by the string method using 1/β̄ = 0.87/βc is shown in Fig. 14.
Comparing this path to those shown in Fig. 8, we see that the new MFEP looks more
like the ones in which the transition state is a critical droplet than those in which it is a
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Fig. 14 MFEP (left: spin space, right: collective variable space) for the system with periodic boundary
conditions and h = 0.02. The MFEP was calculated at the temperature 1/β̄ = 0.87/βc , which gives as
effective temperature the desired temperature of 1/βeff = 0.8/βc
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Fig. 15 Free energy profile and committor values along the MFEP for the spin system with periodic
boundary conditions, h = 0.02 and 1/β̄ = 0.87/βc (corresponding to 1/βeff = 0.8/βc). The committor
values from direct simulation (triangles) were computed using the images along the MFEP calculated at
1/β̄, but the initial spin configurations at each image for each of the 500 unrestrained simulations were
sampled at 1/βeff. Each free simulation was then run at 1/βeff

stripe-like structure (i.e. we now correctly predict that we should be past the mechanism
switch at h = 0.02). This is confirmed by the free energy profile shown in Fig. 15.
The committor function shown in this figure now agrees much better with the one
estimated by direct simulation. This shows that artificially increasing the temperature
in a consistent way within the string method permits, to some extent, to correct for
the artifact that the string method introduces if employed at the physical temperature.
However, we should stress that the range of validity of this procedure is not completely
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clear. A more satisfactory way to deal with this problem would be to use the finite
temperature string method [12,21].

A Efficient calculation of some relevant quantities

In this Appendix we derive the explicit expressions for the update of H(σ ), θ(σ ),
Hλ,z(σ ) and mλ(z) when the state of the spin system is changed from σ to σ j . We
show that the changes in these quantities only depend on the state of the system at the
previous MC step, and that their calculation only involves the spin which has changed
sign and its nearest neighbors, so that they can be efficiently computed in a simulation.

A.1 Hamiltonian of the system of spins

We first rewrite the Hamiltonian in (1) as

H(σ (n)) = −J
∑

〈i,k〉�= j

σi (n)σk(n) − h
∑

i �= j

σi (n) − σ j (n)(J
∑

i∈neigh j

σi (n) + h) (A1)

where the contribution of σ j (n) (with n denoting the current MC step) is made explicit
and we have indicated by neigh j the indexes of the nearest neighboring spins of σ j .
If at step n + 1 σ j is flipped, the only term that changes in (A1) is the last term at the
r.h.s., which becomes +σ j (n)(J

∑
i∈neigh j

σi (n) + h). Hence we have

H(σ (n + 1)) = H(σ (n)) + 2σ j (n)(J
∑

i∈neigh j

σi (n) + h). (A2)

Note that all the quantities at the r.h.s. of the equality (A2) are evaluated at step n.

A.2 Collective variables

We now consider the collective variables defined via (20). Suppose that the variable
θα(σ ) is defined in the block Bα which contains σ j . We can then rewrite (20) as

θα(σ (n)) = 1

N B
s

∑

i∈Jα
i �= j

σi (n) + σ j (n)

N B
s

. (A3)

The first term at the r.h.s. of (A3) does not depend on spin j , hence when σ j is flipped
the new value of the collective variable in block Bα is simply given by

θα(σ (n + 1)) = θα(σ (n)) − 2σ j (n)

N B
s

(A4)
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A.3 Restraining potential

To calculate the change in the restraining potential on the collective variables when
σ j ∈ Bα is flipped, we define H̃λ,z(σ ) = Hλ,z(σ ) − H(σ ) and, using (31), write it as

H̃λ,z(σ (n)) = Hλ,z(σ (n)) − H(σ (n))

= λ

2

⎛

⎝
MB∑

β �=α

(θβ(σ (n)) − zβ)2 + (θα(σ (n)) − zα)2

⎞

⎠. (A5)

When spin σ j is flipped, the only term that changes in (A5) is the term depending on
the index α, so that we have

H̃λ,z(σ (n + 1)) − H̃λ,z(σ (n))

= λ

2

(
θ2
α(σ (n + 1)) − θ2

α(σ (n)) − 2zα (θα(σ (n + 1)) − θα(σ (n)))
)
. (A6)

Using (A4) we obtain

θ2
α(σ (n + 1)) − θ2

α(σ (n)) = −4σ j (n)

N B
s

(
θα(σ (n)) − σ j (n)

N B
s

)
. (A7)

Substituting (A4) and (A7) in (A6) gives as final result

H̃λ,z(σ (n + 1)) = H̃λ,z(σ (n)) + 2λσ j (n)

N B
s

(
zα − θα(σ (n)) + σ j (n)

N B
s

)
. (A8)

A.4 Calculation of mλ(z)

Recall that to estimate mλ
k (z) we have introduced the quantity (see (46))

Aα(n) =
∑

i∈Jα

c(σ (n), σ i (n)). (A9)

The only terms that will change in the sum (A9) when σ j is flipped are the ones
depending on σ j and the ones depending on spins σi with i ∈ Jα and i ∈ neigh j .
Explicitly

Aα(n + 1) − Aα(n) = −c(σ (n), σ j (n)) + c(σ (n + 1), σ j (n + 1))

−
∑

i∈neigh j
i∈Jα

c(σ (n), σ i (n)) +
∑

i∈neigh j
i∈Jα

c(σ (n + 1), σ i (n + 1)).

(A10)
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Now note that by the definition in (5) the state of the spin system obtained from state
σ(n) by flipping spin σ j satisfies σ(n + 1) = σ j (n) (or, equivalently, σ j (n + 1) =
σ(n)). So that we can rewrite the first term on the r.h.s. of (A10) as

−c(σ (n), σ j (n)) + c(σ j (n), σ (n)) = − min
{

e−β(Hλ,z(σ
j (n))−Hλ,z(σ (n))), 1

}

+ min
{

eβ(Hλ,z(σ
j (n))−Hλ,z(σ (n))), 1

}

=

⎧
⎪⎨

⎪⎩

−e−β	Hλ,z + 1 if 	Hλ,z > 0

−1 + eβ	Hλ,z if 	Hλ,z < 0

0 if 	Hλ,z = 0,

(A11)

where we have used the compact notation 	Hλ,z = Hλ,z(σ
j (n)) − Hλ,z(σ (n)). The

factor 	Hλ,z can be calculated using (A2) and (A8). The terms in the last line of
(A10) can be updated in a similar manner, and only involve the neighboring spins of
σ j which belong to block Bα . Note, however, that the neighboring spins of σ j could
belong to blocks different than Bα . In that case it is the sum in the corresponding block
that has to be updated.
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